大數據技術
來源:轉載 時間:2015-04-10 14:09:42
數據采集:ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層后進行清洗、轉換、集成,最后加載到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
數據存取:關系數據庫、NOSQL、SQL等。
基礎架構:云存儲、分布式文件存儲等。
數據處理:自然語言處理(NLP,NaturalLanguageProcessing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機"理解"自然語言,所以自然語言處理又叫做自然語言理解(NLU,NaturalLanguageUnderstanding),也稱為計算語言學(ComputationalLinguistics。一方面它是語言信息處理的一個分支,另一方面它是人工智能(AI,ArtificialIntelligence)的核心課題之一。
統(tǒng)計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優(yōu)尺度分析)、bootstrap技術等等。
數據挖掘:分類(Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規(guī)則(Affinitygroupingorassociationrules)、聚類(Clustering)、描述和可視化、DescriptionandVisualization)、復雜數據類型挖掘(Text,Web,圖形圖像,視頻,音頻等)
模型預測:預測模型、機器學習、建模仿真。
結果呈現:云計算、標簽云、關系圖等。
要理解大數據這一概念,首先要從"大"入手,"大"是指數據規(guī)模,大數據一般指在10TB(1TB=1024GB)規(guī)模以上的數據量。大數據同過去的海量數據有所區(qū)別,其基本特征可以用4個V來總結(Vol-ume、Variety、Value和Veloc-ity),即體量大、多樣性、價值密度低、速度快。
第一,數據體量巨大。從TB級別,躍升到PB級別。
第二,數據類型繁多,如前文提到的網絡日志、視頻、圖片、地理位置信息,等等。
第三,價值密度低。以視頻為例,連續(xù)不間斷監(jiān)控過程中,可能有用的數據僅僅有一兩秒。
第四,處理速度快。1秒定律。最后這一點也是和傳統(tǒng)的數據挖掘技術有著本質的不同。物聯網、云計算、移動互聯網、車聯網、手機、平板電腦、PC以及遍布地球各個角落的各種各樣的傳感器,無一不是數據來源或者承載的方式。
大數據技術是指從各種各樣類型的巨量數據中,快速獲得有價值信息的技術。解決大數據問題的核心是大數據技術。目前所說的"大數據"不僅指數據本身的規(guī)模,也包括采集數據的工具、平臺和數據分析系統(tǒng)。大數據研發(fā)目的是發(fā)展大數據技術并將其應用到相關領域,通過解決巨量數據處理問題促進其突破性發(fā)展。因此,大數據時代帶來的挑戰(zhàn)不僅體現在如何處理巨量數據從中獲取有價值的信息,也體現在如何加強大數據技術研發(fā),搶占時代發(fā)展的前沿。